Structural relatedness of three ion-transport adenosine triphosphatases around their active sites of phosphorylation.

نویسندگان

  • M O Walderhaug
  • R L Post
  • G Saccomani
  • R T Leonard
  • D P Briskin
چکیده

Three membrane-bound adenosine triphosphatases were investigated for homology in the sequence of four amino acids about the active site of phosphorylation. The ATPases were as follows: sodium-potassium-dependent ATPase from dog kidney, Na,K-ATPase; hydrogen-potassium-dependent ATPase from hog gastric mucosa, H,K-ATPase, an ATPase similar to Na,K-ATPase; and an ATPase activity in the plasma membrane of corn, Zea mays, roots (CR-ATPase), a higher plant ATPase. A membrane preparation containing an ATPase of Acholeplasma laidlawii, a prokaryote, (AL) was also investigated. For most of the experiments, the preparations were phosphorylated from [gamma-32P]ATP, denatured in acid, and subjected to proteolytic digestion. Radioactive phosphopeptides were separated by high voltage paper electrophoresis and characterized by sensitivity to chemical reagents. In gastric H,K-ATPase, the aspartate residue at the active site was determined directly by labeling with [3H]borohydride. A common sequence around the active site was found for Na,K-ATPase, H,K-ATPase, and CR-ATPase. This sequence, -Cys-(Ser/Thr)-Asp(P)-Lys-, is similar to that in the calcium ion-transport ATPase of sarcoplasmic reticulum. The AL membrane preparation showed an acylphosphate that turned over rapidly after a chase of labeled membranes with unlabeled ATP. The corresponding sequence was different from that of the three ATPases. An acylphosphate was on two polypeptides with molecular weights of about 80,000 and 60,000; these appear not to correspond to subunits of a Na+-stimulated ATPase in this organism (Lewis, R. N. A. H., and McElhaney, R. N. (1983) Biochim. Biophys. Acta 735, 113-122).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Similarity of the Active Site of Phosphorylation of the Adenosine Triphosphatase for Transport of Sodium and Potassium Ions in Kidney to That for Transport of Calcium Ions in the Sarcoplasmic Reticulum of Muscle*

The active sites of phosphorylation of two ion pump proteins were compared, In this usage, “active site” means the site of covalent attachment of the phosphate group to the protein. The active site of the sodium and potassium ion transport adenosine triphosphatase of guinea pig kidney was compared with that of the calcium ion transport adenosine triphosphatase of the sarcoplasmic reticulum of r...

متن کامل

Structure-function relationship in P-type ATPases--a biophysical approach.

P-type ATPases are a large family of membrane proteins that perform active ion transport across biological membranes. In these proteins the energy-providing ATP hydrolysis is coupled to ion-transport that builds up or maintains the electrochemical potential gradients of one or two ion species across the membrane. P-type ATPases are found in virtually all eukaryotic cells and also in bacteria, a...

متن کامل

Phosphorylation by inorganic phosphate of sodium plus potassium ion transport adenosine triphosphatase. Four reactive states.

Native solium and potassium adenosine triphosphatase from guinea pig kidney accepted a phosphate group from radioactive inorganic phosphate to form an acyl phosphate bond at the active site in the presence or absence of sodium ion. Magnesium ion was always required. In the presence of sodium ion and absence of adenosine triphosphate, there was no phosphorylation by inorganic phosphate. Addition...

متن کامل

Ca2+ binding and translocation by the sarcoplasmic reticulum ATPase: functional and structural considerations.

Three experimental systems are described including sarcoplasmic reticulum (SR) vesicles, reconstituted proteoliposomes, and recombinant protein obtained by gene transfer and expression in foreign cells. It is shown that the Ca(2+) ATPase of sarcoplasmic reticulum (SR) includes an extramembranous globular head which is connected through a stalk to a membrane bound region. Cooperative binding of ...

متن کامل

Phosphorylation by Inorganic Phosphate of Sodium Plus Potassium Ion Transport Adenosine Triphosphatase

Native sodium and potassium adenosine triphosphatase from guinea pig kidney accepted a phosphate group from radioactive inorganic phosphate to form an acyl phosphate bond at the active site in the presence or absence of sodium ion. Magnesium ion was always required. In the presence of sodium ion and absence of adenosine triphosphate, there was no phosphorylation by inorganic phosphate. Addition...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 260 6  شماره 

صفحات  -

تاریخ انتشار 1985